首页 > 教学教案 > 初中教案 > 初一教案 > 3.2近似数与有效数字(精选8篇)正文

《3.2近似数与有效数字(精选8篇)》

时间:

学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,也就和人失走肉没啥两样,只是改变命运,同时知识也不是也不是随意的摘取。要通过自己的努力,要把我自己生命的钥匙。

.2 近似数与有效数字 1

教学设计示例

一、素质教育目标

(一)知识教学

1.使学生理解近似数和有效数字的意义

2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字

3.使学生了解近似数和有效数字是在实践中产生的。

(二)能力训练点

通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力。

(三)德育渗透点

通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

(四)美育渗透点

由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受。

二、学法引导

1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

三、重点、难点、疑点及解决办法

1.重点:理解近似数的精确度和有效数字。

2.难点:正确把握一个近似数的精确度及它的有效数字的个数。

3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数。

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片

六、师生互动活动设计

教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决。

七、教学步骤

(一)提出问题,创设情境

师:有10千克苹果,平均分给3个人,应该怎样分?

生:平均每人千克

师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

生:不能

师:哪怎么分

生:取近似值

师:板书课题

2.12

【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

(二)探索新知,讲授新课

师出示投影1

下列实际问题中出现的数,哪些是精确数,哪些是近似数。

(1)初一(1)有55名同学

(2)地球的半径约为6370千米

(3)中华人民共和国现在有31个省级行政单位

(4)小明的身高接近1.6米

学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子。

师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确。

以开始提出的问题为例,揭示近似数的有关概念

板书

1.精确度

2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字。

例如:3.3  有二个有效数字

3.33  有三个有效数字

讨论:近似数0.038有几个有效数字,0.03080呢?

【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

第 1 2 页

教学过程: 2

一、创设情景引入

出示投影:78页彩图,学生组内合作讨论、交流解决问题.

二、新课:

(一)通过学生的活动,加深对近似数的理解,并讲解例题1、2

(二)练习:

1、判断下列各数,哪些是准确数,哪些是近似数

(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;()

(2)检查一双没洗过的手,发现带有各种细菌80000万个;()

(3)张明家里养了5只鸡;()

(4)1990年人口普查,我国的人口总数为11.6亿;()

(5)小王身高为1.53米;(6)月球与地球相距约为38万千米;()

(7)圆周率π取3.14156.()

2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:

(1)四舍五入到十分位___________;(2)四舍五入到百分位_________;

(3)四舍五入到个位____________.

一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.

在上题中,小明得到的近似数分别精确到那一位.

3、下面由四舍五入得到的近似数各精确到那一位

0.320__________;123.3__________;5.60____________;204__________;

5.93万____________;1.6×104_____________.

4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:

(1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.

5.把数73600精确到千位得到的近似数是_______________

精确到万位得到的近似数是_________________

6.近似数3.70所表示的精确值a的范围是()

(A)3.695≤a<3.705(B)3.6≤a<3.80

(C)3.695<a≤3.705(D)3.700<a≤3.705

7.下列数中,不能由四舍五入得到近似数38.5的数是()

(A)38.53(B)38.56001(C)38.549(D)38.5099

分析近似数8与8.0的差别

(三)讲解精确度、有效数字的概念:

对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字.

如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________

2、数0.8050精确到_______位,有_____个有效数字,是_______________

3、数4.8×105精确到_______位,有_____个有效数字,是_______________

4、数5.31万精确到_______位,有_____个有效数字,是_______________

四、讲解例题,解后反思,加深对相关知识的理解.

练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

(1)精确到10㎏是______㎏,有______个有效数字,它们是________

(2)精确到1㎏是______㎏,有______个有效数字,它们是________

(3)精确到0.1㎏是______㎏,有______个有效数字,它们是______

五、小结:

什么是有效数字?按精确到哪一位,求近似值时要注意什么?

六、作业:

P83习题1、2

教学难点: 3

指出较大数位的近似数的有效数字.

.2 近似数与有效数字 4

本案例是一堂新教材新教法的课例。在设计上不同于过去的讲解式、问答式教学,而是充分利用学生参与学习与探讨的热情,让学生充分发表意见,通过对问题的争论与探讨,得出正确的结论。这有利于学生的学习与记忆。在课的开始,设计一些问题,进行小组讨论,再针对相关问题展开。考虑到学生年龄特点,有针对性地对近似数的概念、近似程度(尤其是科学记数法和带单位的情况)进行了讨论和解答,取得了较好的效果,但也存在一些问题待后解决。

(1)为什么使用近似数的原因、使用近似数的意义没有在课例中讲述不太清楚。

(2)学生对形如2.4万、3.05×104的近似程度的理解及有效数字的计算仍然存在一定的问题。

(3)课中一些好的做法仍值得借鉴。如何更好地贯彻新的课改精神,真正地让学生参与到自主探索的学习中去,是今后教学的首要问题。

(4)如何在小组讨论中让每一个学生都积极动起来,都得到一定的提高,而不是一个旁观、旁听者,也是今后教学中值得注意的问题。

(5)通过选做题的形式,将所学知识引伸到生产实践和生活实际中,让学生进一步理解近似数在生产和生活中的应用,培养学生应用数学的意识,鼓励学有余力的学生进行探究性学习,值得提倡。

教学重点: 5

按要求取近似值,能说出它精确到哪一位,有几个有效数字,按精确到哪一位的要求,四舍五入取近似值.

教学目标: 6

1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量.

2、能根据实际问题的需要四舍五入取近似值.

3、对于由四舍五入法得到的`近似数,能说出它精确到哪一位,它们有几个有效数字,是什么.

.2 近似数与有效数字 7

一 学习目标:

1了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用

2能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数

二 重点与难点:

按要求用四舍五入法取一个数的近似数

三 设计思路:本节课通过生活情境让学生搜集生活中的数据,感受数的意义,使得学生进一步认识了近似数,学会了如何去取一个数的近似值,以及指出一个近似数的有效数字,通过讨论交流使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字。

四 教学过程

(一)情境创设

(1) 从早晨起床到上学,你从你的生活环境中获得哪些数的信息?

(2) 生活中,有些数据是准确的,有些是近似的,你能举例说明吗?

(设计说明:让学生自己搜集生活中与数有关的信息,从中进一步感受数的意义)

(二) 近似数

实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。在实际计算中对于像π这样的数,也常常需取它们的近似值。请说说生活中应用近似数的例子。

(设计说明:通过交流生活中近似数的例子,使学生认识到生活中存在近似数,感受近似数在生活中的作用,体会数学与生活的关系)

取一个数的近似值有多种方法,四舍五入是最常用的一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

例如,圆周率=3.1415926…

取π≈3,就是精确到个位(或精确到1)

取π≈3.1,就是精确到十分位(或精确到0.1)

取π≈3.14,就是精确到百分位位(或精确到0.01)

取π≈3.142,就是精确到千分位位(或精确到0.001)

(三) 有效数字

对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

例如:上面圆周率π的近似值中,3.14有3个有效数字3,1,4;3.142有4个有效数字3,1,4,2.

(四) 例题教学

例1 小亮用天平称得罐头的质量为2.026kg,,按下列要求取近似数,并指出每个近似数的有效数字:

(1) 精确到0.01kg;

(2) 精确到0.1kg;

(3) 精确到1kg.

(设计说明:简单应用上面所学知识,先四舍五入取近似值,再确定近似数的有效数字,应注意提醒学生不能随便将小数点后的0去掉。)

例2 用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示。

(1) 地球上七大洲的面积约为149480000(保留2个有效数字)

(2) 某人一天饮水1890ml(精确到1000ml)

(3) 小明身高1.595m(保留3个有效数字)

(4) 人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)

请与同学交流讨论。

(设计说明:通过讨论使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字)

(五) 课堂练习

1 基础训练

书p78 1,2

2 创新探究

( 1) 胜利农场养鸡35467只,一个个体户养鸡13530只(四舍五入到十位),光明农场养鸡64800只(四舍五入到百位),要比较他们养鸡的多少,胜利农场养鸡数应四舍五入到哪一位数时,误差会少些。

(2)张娟和李敏在讨论问题。

张娟:如果你把7498近似到千位数,你就会得到7000.

李敏:不,我有另外一种解答方法,可以得到不同的答案。首先将7498近似到百位得7500,接着把7500近似到千位,就得到8000。

张娟:……

你怎样评价张娟和李敏的说法呢?

3 研究性学习练习

(1) 有一个四位数x,先将它四舍五入到十位,得到近似数m,再把四位数m四舍五入到百位,得到近似数n,再把四位数n四舍五入到千位,恰好是2000,你能求出四位数x的最大值与最小值吗?

(设计说明:通过练习,进一步巩固所学知识,发展能力)

(六) 课堂小结

举出生活中的近似数,指出它们精确到哪一位?各有几个有效数字?

五 教后反思:

上一篇:苏科版八上 2.6 近似数与有效数字 练习(1)

下一篇:苏科版八上 2.7勾股定理的应用(全3课时)练习

.2 近似数与有效数字 8

教学目标:

1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量。

2、能根据实际问题的需要四舍五入取近似值。

3、对于由四舍五入法得到的近似数,能说出它精确到哪一位,它们有几个有效数字,是什么。

教学重点:

按要求取近似值,能说出它精确到哪一位,有几个有效数字, 按精确到哪一位的要求,四舍五入取近似值。

教学难点:

指出较大数位的近似数的有效数字。

教学过程:

一、创设情景引入

出示投影:78页彩图,学生组内合作讨论、交流解决问题。

二、新课:

(一)通过学生的活动,加深对近似数的理解,并讲解例题1、2

(二)练习:

1、判断下列各数,哪些是准确数,哪些是近似数

(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;     (  )

(2)检查一双没洗过的手,发现带有各种细菌80000万个;      (  )

(3)张明家里养了5只鸡;                                  (  )

(4)1990年人口普查,我国的人口总数为11.6亿;                        (  )

(5)小王身高为1.53米;(6)月球与地球相距约为38万千米;     (  )

(7)圆周率π取3.14156.                                  (  )

2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:

(1)四舍五入到十分位___________;(2)四舍五入到百分位_________;

(3)四舍五入到个位____________.

一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

在上题中,小明得到的近似数分别精确到那一位。

3、下面由四舍五入得到的近似数各精确到那一位

0.320__________;123.3__________;5.60____________;204__________;

5.93万____________;1.6×104_____________.

4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:

(1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.

5.把数73600精确到千位得到的近似数是_______________

精确到万位得到的近似数是_________________

6.近似数3.70所表示的精确值a的范围是                                                       (  )

(a)3.695≤a<3.705      (b)3.6≤a<3.80

(c)3.695<a≤3.705      (d)3.700<a≤3.705

7.下列数中,不能由四舍五入得到近似数38.5的数是                                    (  )

(a)38.53         (b)38.56001  (c)38.549  (d)38.5099

分析近似数8与8.0的差别

(三)讲解精确度、有效数字的概念:

对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字。

如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________

2、数0.8050精确到_______位,有_____个有效数字,是_______________

3、数4.8×105精确到_______位,有_____个有效数字,是_______________

4、数5.31万精确到_______位,有_____个有效数字,是_______________

四、讲解例题,解后反思,加深对相关知识的理解。

练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

(1)精确到10㎏是______㎏,有______个有效数字,它们是________

(2)精确到1㎏是______㎏,有______个有效数字,它们是________

(3)精确到0.1㎏是______㎏,有______个有效数字,它们是______

五、小结:什么是有效数字?按精确到哪一位,求近似值时要注意什么?

六、作业:p83习题1、2