首页 > 教学教案 > 教学计划 > 初三数学教学计划(最新10篇)正文

《初三数学教学计划(最新10篇)》

时间:

人生天地之间,若白驹过隙,忽然而已,又迎来了一个全新的起点,此时此刻我们需要开始做一个计划。相信大家又在为写计划犯愁了吧?问学必有师,讲习必有友,该页是可爱的编辑帮大家收集的初三数学教学计划(最新10篇),欢迎阅读。

初三第二学期数学教学计划 篇1

本学期是初中学习的关键时期,教学任务非常艰巨。要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际情况,把握好重点、难点。同时九年级毕业班总复习的教学时间紧,任务重,要求高,如何提高数学总复习的质量和收效,是每位毕业班数学教师必须要解决的问题。下面针对我班的情况进行分析并制定复习计划。

一、学情分析

本班学生两极分化比较严重,部分学生数学基础不够好,学习积极性不高,其中女生居多:魏忠丽、张奥婷、王亚伟、宋明星、戴春林、安璐、廉婧灏、李佳慧等。部分男生学习习惯不太好,家长也不够重视,如:尚国华、祁时杰、武泉铮、肖国路、王宏宏等。由于平时学习不够认真和扎实,我非常担心这些学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、教学内容分析

本学期的课本内容只剩下投影和视图这一章,因此在一周内把课本最后一章结束,接下来就是整体初中内容的有计划复习,复习的教学内容大致可分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

学生解题过程中存在的主要问题:

(1)审题不清,不能正确理解题意;

(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;

(3)对所学知识综合应用能力不够;

(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

三、教学计划措施

1、认真研读学习课标,紧抓中考方向,了解中考的有关的政策,避免走弯路,走错路。同时研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。

2、扎扎实实打好基础。

重视课本,系统复习。初中数学基础包括基础知识和基本技能两方面。现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三。

3、综合运用知识,提高自身的各种能力。

初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等。

(1)提高综合运用数学知识解题的能力。要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通。目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳。

(2)狠抓重点内容,适当练习热点题型。几年来,初中的数学的方程、函数、直线型一直是中考的重点内容。方程思想、函数思想贯穿试卷始终。另外,开放题、探索题、阅读理解题、方案设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型。

4、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

同时经常听取学生良好的合理化建议。

初三数学教学计划 篇2

根据学校工作安排,我担任初三年级数学,本学期教学计划如下:

一、教学思想:

教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、学生基本情况分析:

上学年学生期末考试的成绩总体来看,成绩只能算一般。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、本学期的教学内容共七章:

第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;第25章:解直角三角形;第26章:随机事件的概率;笫27章:二次函数;笫28章:圆。

四、在教学过程中抓住以下几个环节:

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)抓住课堂40分钟。严格按照教学计划,备课统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

五、不断钻研业务,提高业务能力及水平:

积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。

六、提高质量的措施:

1、认真学习钻研新课标,掌握教材。

2、认真备课,争取充分掌握学生动态。

3、认真上好每一堂课。

4、落实每一堂课后辅助,查漏补缺。

5、积极与其它老师沟通,加强教研教改,提高教学水平。

6、经常听取学生良好的合理化建议。

7、以“两头”带“中间”战略思想不变。

8、深化两极生的训导。

初三数学教学计划 篇3

本学期初三数学教学工作主要学习初三《代数》的第十二章和第十三章的部分内容、《几何》第六章和第七章的部分内容。

九义教材初三数学学科包括第三册《代数》和第三册《几何》。

初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的'函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。

初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。

初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识饩黾虻氖导饰侍猓?嘌 ?氖?Т葱乱馐丁⒘己酶鲂云分室约俺醪降奈ㄎ镏饕骞邸?/SPAN

本学年我担任初三年级31、33两个班的数学教学工作。其两班学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或者是一问三不知,或者是张冠李戴。就班级整体而言,33班成绩大多处于中等偏下,31班成绩大多处于中等层次。

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、 新课开始前,用一个周左右的时间简要复习初二学年的所有内容,特别是几何部分。

2、 教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、 教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、 新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、 坚持以课本为主,要求学行完成课本中的练习、习题(A组)、复习题(A组)和自我测验题,学生做完后教师讲解,少做或不做繁、难、偏的数学题目。

6、 复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

7、 利用各种综合试卷、模拟试卷和样卷考试训练,使学生逐步适应考试,最终适应并考出好成绩。

8、 教学中在不放松36班的同时,狠抓35班的基础部分。

内 容

复习初二内容

解直角三角形

一元二次方程

函数及其图像

统计初步

综合复习模拟训练

除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业,另外,以20xx年研讨会和相关信息为依据,带领初三全体学生密切关注20xx年动向,为迎接中考作好充分的准备。教学中 细节方面的内容还有待于在具体的工作中进一步探索、补充和完善。

初三数学第一学期教学工作计划 篇4

一、教学内容

1、二次根式。

2、一元二次方程。

3、旋转。

4、圆。

5、概率初步。

二、课程教学目标

(一)二次根式

1、理解二次根式的概念,理解被开数必须是非负数的理由。

2、理解最简二次根式的概念和性质。

3、熟练掌握二次的加、减、乘、除运算和四则运算。

(二)一元二次方程

1、以分析实际问题中的等量关系并求其解为背景,认识一元二次方程极其概念。

2、根据化归思想,抓住降次,这基本策略,掌握配方法,公式法,因式分解法等一元二次方程的基本解法。

3、、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本思想。

(三)旋转

1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心距离相等。对应点与旋转中心连线彼此相等。

2、能够要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用。

3、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,理解平行四边行、圆是中心对称图形。

4、探索图形之间的变化关系(轴对称、平移、旋转及组合。

(四)圆

1、理解圆的有关概念,理解弧、弦、圆心角的关系,探索并理解点与圆、直线与圆、圆与圆的位置关系。探索并掌握圆周角与圆心角的关系,直径所对的圆周角的关系特征。

2、了解切线的概念,探索并掌握切线与过切线的点半径之间的位置关系,能判断一条直线是否为圆的切线,会过圆上一点画圆的切线。

3、了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。

4、了解正多边形的概念,掌握用等份圆周画圆的内接正多边行的方法,会计算弧长和扇形的面积,圆锥的侧面积和全面积。

5、结合相关图形性质的探索和证明,培养学生的推理能力,发展学生的逻辑思维能力,推理论证能力。

(五)概率初步

1、理解什么是必然事件、不可能事件,什么是随机事见。

2、了解概率的意义,理解概率的取值范围的意义。

3、能够运用列举法(包括列表画树形图),计算简单事件的概率。

4、能够通过实验,获得事件发生的频率,知道大量重复实验时频率可作为事件发生概率的估计值,理解频率与概率之间的区别与联系。

三、教学进度计划(详见下页)

周次时间教学内容

9月1日至9月7日二次根式、二次根式的乘除

9月8日至9月14日二次根式的加减、复习检测

9月15日至9月21日一元二次方程、降次

9月22日至9月28日降次、实际问题与一元二次方程

9月29日至10月5日放假休息

10月6日至10月12日复习检测、图形的旋转

10月13日至10月19日中心对称、图案设计

10月20日至10月26日复习检测、圆

10月27日至11月2日圆、与圆有关的位置关系

11月3日至11月9日与圆有关的位置关系、正多边形和圆

11月10日至11月16日期中考试

11月17日至11月23日弧长和正多边形面积、复习检测

11月24日至11月30日概率

12月1日至12月7日用列举法求概率

12月8日至12月14日利用频率估计概率

12月15日至12月21日复习检测

12月22日至12月28日期末复习

12月29日至1月4日期末复习

1月5日至1月10日期末复习

1月11日至1月17日期末考试

四、教学质量提高的方法措施

1、教学中始终要培养和激发学生的学习兴趣,使其爱学乐学。

2、掌握好每章节的知识点并加强练习巩固。

3、每章进行小结性检测,分析知识技能掌握情况并进行插缺补漏。

4、每月进行一次月考,有目的地进行部分重点知识技能的巩固、训练。

5、与学生拉近距离,进行心理沟通,进行学习目的、理想且为之而奋斗。

初三数学教学计划 篇5

教学目标:

1、知识目标:

①了解位似图形及其有关概念;

②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。

2、能力目标:

①利用图形的位似解决一些简单的实际问题;

②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。

3、情感目标:

①通过学习培养学生的合作意识;

②通过探究提高学生学习数学的兴趣。

教学重点:

探索并掌握位似图形的定义和性质;

教学难点:

运用定义和性质进行简单的位似图形的证明和计算。

教学方法:

从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。

教学准备:

刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、

教学手段:

小组合作、多媒体辅助教学

教学设计说明:

1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。

2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

教学过程:

一、创设情境 引入新知

观察大屏幕有五个图形,每个图形中的四边形abcd和四边形a1b1c1d1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?

(学生经过小组讨论交流的方式总结得出:)

特点:(1)两个图形相似:

(2)每组对应点所在的直线交于一点。

二、合作交流 探究新知

请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议 观察上图中的五个图形,回答下列问题: (1) 在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2) 在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)

位似图形对应点到位似中心的距离之比等于相似比。由此得出:

位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。三、指导应用 深化理解

(同学们观察大屏幕出示的问题)

例1如图d,e分别是ab,ac上的点。(1)如果de∥bc,那么△ade和△abc位似图形吗?为什么?(2)如果△ade和△abc是位似图形,那么de∥bc吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?

根据是位似图形的定义。

需要两个条件:

!、△ade和△abc相似;

2、对应点所在的直线交于一点。

问题2:已知△ade和△abc是位似图形,我们根据什么又能得出什么结论?

根据位似图形的性质得出:

1、对应点和位似中心在同一条直线上;

2、它们到位似中心的距离之比等于相似比。

(一生口述师板书:)

解:(1)△ade和△abc是位似图形。理由是:

∵de∥bc

∴∠aed=∠b, ∠aed=∠c.

∵△ade∽△abc.

又∵点a是△ade和△abc的公共点,点d和点b是对应点,点e和点c是对应点,直线bd与ce交于点a,

∴△ade和△abc是位似图形。

(2)de∥bc.理由是:

∵△ade和△abc是位似图形

∴△ade∽△abc.

∴∠ade=∠b,

∴de∥bc.

四、继续观察 拓展提高

(同学们继续观察屏幕展示的图形)在图(1)——(5)中,位似图形的对应线段ab与a1b1是否平行?bc与b1c1,cd与c1d1,ad与a1d1是否平行?为什么?

同桌观察探究并发言:对应边平行或在同一条直线上。

(出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)

五、反馈练习 落实新知

挑战自我:

1、下面每组图形中都有两个图形。

(1)哪一组中的每两个图形是位似图形?

(2)作出位似图形的位似中心

2、如图ab,cd相交于点e,ac∥db. △ace与△bde是位似图形吗?为什么?

(此环节由学生独立完成,第二题让一名学生到黑板上板书,以备面对全体矫正)

六、归纳小结 反思提高

请同学们谈一谈本节课的有什么收获和感想?

本节课我们学习了位似图形,知道了什么叫位似图形,位似图形有什么性质?我们可以利用定义来证明位似图形,已知位似图形我们可以根据性质得到有关结论。观察并判断位似图形的方法是,一要看是否相似,二要看对应边是否平行或在同一条直线上。

七、自我评价 检测新知

1、如果两个位似图形的每组________所在的直线都_________,那么这样的两个图形叫做位似图形,这个点叫做________,这时的相似比又叫做________。

2、位似图形的对应点到位似中心的距离之比等于_____________;位似图形的对应角__________,对应线段__________(填:“相等”、“平行”、“相交”

、“在一条直线上”等)

3、位似图形的位似中心,有的在对应点连线上,有的在___________的延长线上。

4、如果两个位似图形成中心对称,那么这两个图形__________(填“一定”、“不”或“可能”等)

5、下列每组图形是由两个相似图形组成的,其中_____________中的两个图形是位似图形。

(由学生独立完成,教师巡视。最后公布答案,教师并将发现的问题及时矫正有利于学生知识的巩固和提高)

八、课后延伸 探索创新

在如图所示的图案中,最外圈的8个三角形组成的图形和次外圈的8个红色三角形组成的图形是位似图形吗?如果是,为似比是多少?

初三数学教学计划 篇6

【学习目标】

1、了解整式方程和一元二次方程的概念 。

2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

【重点、难点】

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定

【学习过程】

一、

知识回顾

1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。

2、指出下列方程那些是一元二次方程:那些是一元一次方程?

(1) 3x十2=5x-3

(2) x2=4

(3) (x十3)(3xo4)=(x十2)2;

(4) (x-1)(x-2)=x2十8;

以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________

二、

探究新知[一]

1、一元二次方程的一般形式是( )

1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)

2)。方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?

3)。强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.

探究新知(二)

1、说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x 2十3x十2=O ___________

(2)x 2-3x十4=0; __________

(3)3x 2-5=0 ____________

(4)4x 2十3x-2=0; _________

(5)3x 2-5=0; ________

(6)6x 2-x=0. _______

2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;

(3) (3x十2) 2=4(x-3) 2

[学以致用:]

强化概念:

1. 说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O ______

(2)x2-3x十4=0;_______

(3) 3x2-5=0 _____________

(4)4x2十3x-2=0;____________

(5)3x2-5=0______________

(6)6x2-x=0________

2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x

(2)3x(x-1)=2(x十2)-4

(3)(3x十2)2=4(x-3)2

[知识总结:]

(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?

(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );

(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项][系数、一次项系数。如:(3x十2) 2=4(x-3)____________

诊断检测题一:

1、一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项。

2、方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.

3、方程mx2+5x+n=0一定是( )。

A.一元二次方程 B.一元一次方程

C.整式方程 D.关于x的一元二次方程

4、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )

A.任意实数 B. m≠-1 C. m>1 D. m>0

5、方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);

3X2+Y=2X那些是一元二次方程?

6、把下列方程化成一般形式,且指出其二次项,一次项和常数项

(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x

诊断检测题二:

1、方程 的二次项系数是 ,一次项系数是 ,常数项是 .

2、把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;

3、一元二次方程 的一个根是3,则 ;

4. 是实数,且 ,则 的值是 .

5、关于 的方程 是一元二次方程,则 .

6、方程:① ② ③ ④ 中一元二次程是 ( )

A. ①和② B. ②和③ C. ③和④ D. ①和③

初三数学教学计划 篇7

眼看着中考倒计时了,不知道同学们如今的心情怎么样。或许你激进,或许畏惧,或许稳重,或许慌张,或许踌躇满志,或许满眼迷茫。无论哪种,同学们,我们都应该感谢初三。

或许以后你们将会感慨,整个初中是我们人生中最应该享受的时光,并不是因为我们多么自由,多么富有,而是因为此时我们年轻,对于朋友和同学来说我们拥有彼此,这种日子仅此三年。中考复习的每一天,尽管学习很辛苦,做题很疲惫,但是我们知道我们的目标,我们也知道会有老师帮助我们尽可能的实现它。

所以,每个人都不是自己在奋战,每天的辛苦复习中,我们有老师,有同学,拥有朋友和家人,每个人都会挺你。中考,没有人让你去下火海,没有人逼你说拿命来,复习仅仅是辛苦,但是不会觉得恐怖。

我们想想和同学们一起埋头苦写的日子,互相追赶着彼此的进度,虽然紧张,但是课间依然说笑如常。彼此之间不应该是竞争者,而是队友。一套卷子发下来争先恐后的做着,生怕比别人落下,生怕比别人少做,而后对于某些题大家又开始互相讲解,互相调侃着。我们希望不断地通过做题来证明我们的实力,找到那种被别人羡慕的成就感。初三的生活就是这样,我们恨它因为他让我们不得不忙碌着,我们爱它,因为他让我们忙碌并在一起。

好啦,言归正传,对于我们来说现在满打满算,也只有4个月不到的时间能够用来复习,再细细算一下,直到一摸前,我们只有2个月的时间了。这段时间,转瞬即逝,但是如果能够把握好对于我们提高成绩还是可以有很大帮助的。

在此阶段同学们复习时需要注意两点,第一是方法,第二是心态。

先说方法,春季的复习,基础知识永远是我们不得不重视的。

第一、基础知识系统化。

看到一道题,我们要知道它在考什么,我们要明确的知道每一个知识点来源于那一部分知识。牢记每一部分知识的重点,难点以及易错点能够大大降低我们的出错率。就像看到分式方程一定要想到验根初中学习方法,看到一元二次方程一定要想到算一下△,看到等腰三角形一定要注意分类讨论并且想到三线合一。

初中学过的所有知识都有着他最基础的一部分以及较难掌握的一部分,这就对应着我们中考要求中ABC三类不同的要求,我们对于每一部分知识都要做到心中有数,尤其是几何的模型,例如圆与切线当中的单切线,双切线以及三切线,相似当中的非垂直相似,双垂直相似以及三垂直相似模型,我们都要了然于胸,这才能使得我们做题的思路来得更快更清晰。

再者,对于构造等腰三角形以及直角三角形来说,经常需要讨论谁是腰谁是底边,哪个是直角边哪个是斜边,这里系统化的方法就变得特别的重要了。为了保证讨论的情况不丢不落,必须要按照一定的原则进行划分,否则拼拼凑凑就有可能有丢的有重复的。因此,我们一定要学会对于基本题型的总结,对于基本知识点的归纳,以保证我们做题的顺畅与严谨。

备战初三期末考试:如何为自己“添枝加叶”

距初三期末考试只剩半个月时间了,桌子上这么些课本、资料是否看得过来?看过了又能记住多少?北京五中初三老师谭丽建议,不妨给自己画棵“知识树”,有条理地展开期末复习。

要想了解自己的知识漏洞在哪里,就要先对所学全部知识作一个系统的梳理。这棵知识点系统“树”重要知识点是树干,次要一些的分支点是树杈,从一个知识点出发,引申出一系列的概念、定义的相关知识。复习时,学生要对照知识表有顺序、有逻辑展开,别“东一榔头、西一棒槌”,反把思路搞乱了。

列好知识表后,学生可以通过循序渐进的复习方式堵漏洞,练习强度根据漏洞的重要性判断。如果这个概念是知识系统里不可或缺的一部分,就要下大功夫掌握;如果只是一个旁支的小知识点,可以考虑暂时粗略复习,等寒假再把它补上。

此外,有些初三生认为所学课程已经结束,书中的基础知识就没有再看的必要,这种想法不可取。其实,“磨刀不误砍柴功”。例如,语文试卷中基础知识积累及运用部分,数学中的简单运算例题,物理的'基本概念和公式等,这些内容就好比是大树的根基,丢掉这些,失分就在所难免初中物理。

最后,在掌握了这些基础知识和重点难点后,同学们就可以根据自己的能力范围为知识大树“添枝加叶”。学生们可以动手制作一盒小卡片,把自己各科近期考卷的出错点记下来。上学路上、课间休息时,随时拿出来翻阅一遍,做到“有的放矢”。

初三数学第一学期教学计划 篇8

一、教学思想:

教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、学生基本情况分析:

上学年学生期末考试的成绩总体来看,成绩只能算一般。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、本学期的教学内容共七章:

第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;第25章:解直角三角形;第26章:随机事件的概率;笫27章:二次函数;笫28章:圆。

四、在教学过程中抓住以下几个环节:

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)抓住课堂40分钟。严格按照教学计划,备课统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

五、不断钻研业务,提高业务能力及水平:

积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。

六、提高质量的措施:

1.认真学习钻研新课标,掌握教材。

2.认真备课,争取充分掌握学生动态。

3.认真上好每一堂课。

4.落实每一堂课后辅助,查漏补缺。

5.积极与其它老师沟通,加强教研教改,提高教学水平。

6.经常听取学生良好的合理化建议。

7.以“两头”带“中间”战略思想不变。

8.深化两极生的训导。

初三数学第一学期教学计划 篇9

岁月如梭,转眼间四年的大学生活和三年的研究生生活已经结束,我的人生角色也发生了一个重大的转变,由20年的稚嫩憨傻的学生突然变成了一名光荣的人民教师。新的学期开始了,一切都是新的,新的校园环境,新的学生,新的同事,新的挑战也随之而来。为了能更好的完成自己的教学任务,在新学期开始之际,根据学校工作计划的安排并结合自己的学科特色和自己的学生特点,特制定以下20--—20--学年度第一学期教学工作计划

一、学部和班级情况分析:

我们学部的老师绝大部分都是新老师,新老师虽然教学经验欠缺,但精神风貌良好,通过新旧老师互帮护扶,结对子等活动,我相信我们学部会在主任的带领下会闯出一片未来的。这学期,我来担任高一年级0903班的英语老师,通过一周课的时间观察,我发现我们班学习气氛还是比较浓厚的,学生的学习习惯也比较好,有几个同学上课表现的非常积极,讲解问题既清晰又正确,但也有一部分同学学道没有完成。因此,在新的学期我将根据所带班级的整体情况,在教学中要通过因材施教,分类指导,循循善诱,多多鼓励,诲人不倦等方式不断调整和改进自己的教学方法,根据学生的心理特征和个性特点来个别指导,使我们班英语整体成绩明显提升。

二、英语教学工作计划方面:

认真贯彻和落实学校倡导的“学导式螺旋发展大课堂”的教学改革模式,要努力转变观念,尽快适应学校的新的课堂模式,真正做到以学生为中心,为学生服务,让学生成为课堂的主人。不仅要关心爱护学生,而且也要对学生严格要求,促进学生的身心健康的全面发展。

认真编写“学道”,学道的编写一定要达到高质量,轻负担,及时检查、监督的要求。一定要紧扣课本,根据教学大纲的要求,编写一些重点,难点问题,让学生在课堂上逐一攻克难题,养成一个日积月累的好习惯。老师要逐渐的引导学生,不仅要给学生传授知识,还要开发学生的思维能力,促进学生思想感情的培养。

在课堂教学中,我一定要抓住重点,难点,易混点等语言形象生动准确地反馈给学生,课下要对学生个别辅导,给学生讲做题的方法和技巧,希望他们人人每天都精神抖擞,心情愉悦的进行学习。

英语教学比较紧张,一周差不多要讲完一个单元,每周几乎都要进行一次小的考试(周练),我要做到周练前系统的给学生复习,考试后及时阅卷,对学生考试中所遇到的问题及解决办法及时的反馈给学生,保证每一次周练学生都做到心中有数,每一次周练学生都能有不小的进步。

我们老师还应该多学习一些教育大师们的教育学生的方法,取其精华,去其糟粕,取别家之长来补自家之短;另外要多多上咱们学校的内网,根据学校的指示和要求,多多和其他老师进行交流和学习,这样大大促进咱们学校的教育教学工作。

三、教研工作计划方面:

要按时参加观课、议课等活动,做到听老教师讲课至少一个学期,虚心学习其他教师的讲课优点及精华,不断提高和完善自己;在学科教研和网络教研中要积极发言,认真听取其他教师的建议和意见,认真作好记录;认真落实集体备课,班主任教师会等集体活动,做到集体参与,踊跃发言,充分发挥集体的力量来转变自己看问题的一些方式和方法。

最后,我相信自己能一步一个脚印,脚踏实地,兢兢业业的按照以上我所写的教学计划让高质量的英语教学落到实处!

初三数学教学计划 篇10

一、教学目标

1、了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。

2、掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。

二、重点、难点

1、重点:位似图形的有关概念、性质与作图。

2、难点:利用位似将一个图形放大或缩小。

3、难点的突破方法

(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比。利用位似图形的定义可判断两个图形是否位似。

(3)位似图形首先是相似图形,所以它具有相似图形的一切性质。位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。

(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行。

(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题。作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关(如例2),并且同一个位似中心的两侧各有一个符合要求的图形(如例2中的图2与图3)。