首页 > 教学教案 > 小学教案 > 五年级教案 > 五年级的数学教案【优秀3篇】正文

《五年级的数学教案【优秀3篇】》

时间:

作为一名人民教师,往往需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。写教案需要注意哪些格式呢?下面是小编辛苦为大家带来的五年级的数学教案【优秀3篇】,希望大家可以喜欢并分享出去。

小学五年级数学教案 篇1

●学习目标

1、初步理解除数是整数的小数除法的含义,根据已有的生活经验和知识基础,探究除数是整数的小数除法的计算方法。

2、初步理解和掌握除数是整数的小数除法的计算方法,会计算除数是整数的小数除法问题

3、能初步利用等量划分(包含除)与平均分(等分除)来解决日常生活中的一些简单问题。

4、进一步理解“倍”的含义,知道两个量的关系有时可用“小数倍”表示。

●重点难点

学习重点:除数是整数的小数除法的计算方法。

学习难点:小数除以整数中“商与被除数小数点对齐”;除到被除数末尾有剩余,在剩余部分后面添0,再继续除。

●教材知识讲解

例1、买3千克黄瓜要5.28元,每千克黄瓜售多少元?

分析与解答:

根据我们的生活,知道5.28元不到6元,因此黄瓜每千克的售价不到2元。又:黄

瓜的单价=黄瓜总价÷数量,因此列出除法算式:5.28÷3

5.28÷3怎样计算呢?

方法1:5.28元=528分528÷3=176(分)176分=1.76元

方法2:5.28元里有528个0.01元,528÷3=176(个)

就是说每千克是176个0.01元,是1.76元

两种方法算得的结果一样,接近我们的估测,而且两种方法都采用了整数除法计算,

我们尝试用竖式计算:

点拨:如果除到被除数末尾有剩余,在剩余部分后面补0继续除。

例3、有3.5千克葡萄干,平均分给7人,每人可分多少千克?

分析与解答:

3.5÷7,显然,每人分到的不足1千克,整数部分不够分,怎么办?

我们把3.5千克转化成3500克计算,3500÷7=500(克),500克=0.5千克。

用竖式计算:

●方法与技巧

1、除数是整数的小数除法,按整数除法的方法计算,商的小数点要和被除数的小数点对齐;

如果除到被除数末尾有剩余,在剩余部分后面补0继续除。

2、被除数的整数部分比除数小时,在个位上直接商0,点上小数点,再按整数除法的方法

继续算。

3、求大的量是小的量的几倍时,不仅可以用整数倍,还可用“小数倍”表示。

3、应用

(1)甲、乙两地相距180千米,一辆汽车从甲地开往乙地每小时行48千米,几小时后可以到达?

(2)甲种巧克力每千克售65.8元,乙种巧克力每千克售47元。甲种巧克力的单价是

乙种巧克力单价的几倍?

自我检测参考答案

1、1.2,0.003,1.525,0.25

2、 8.1,5.4,0.029,0.065,0.45,0.035

3、(1)180÷48=3.75(小时)

(2)65.8÷47=1.4

小学数学五年级下册教案 篇2

教学要求

(1)通过观察和动手操作等教学活动,使学生初步学会收集原始数据和分类整理的方法。

(2)通过有说服力的数据使学生受到爱国主义教育。

教学重点收集数据的方法。

教学用具

(1)用投影制作出教材的复习题

(2)学生每人准备一枚一元的硬币。

教学过程

一、创设情境

我们已学过收集静止的数据,如:第1页的复习题(投影显示)。

1、点一名学生上来完成下面的统计表和条形统计图,其余的学生做在书上。

2、统计一下我们班同学寒假里读课外书的数量情况。

以前我们学习的是收集静止事物的数据,如复习题,但有的时候要收集的数据往往不是静止的,要随着时间的变化逐个收集和积累,这时就要采用另外的方法来收集和积累数据。今天我们进一步学习:

(板书课题)数据的收集和整理

二、探索研究

1、探索收集数据的方法。

放:例1中的路口在10分种内各种机动车通过的录像,让学生看。

(1)小组合作,探索研究

①各种车辆的出现有没有规律?

②在这种情况下,怎样才能准确无误地记下各种车辆通过的数据?

③小组讨论:用什么方法记录数据?

④汇报展示,统一方法。

(2)学生实际操作。

每人拿出一张纸写出各种车辆名称,然后听老师报通过的车辆,并画“正”字记载。

讲:你们纸上收集的数据是原始数据。为了清楚地表示10分种内各种机动车通过路口的辆数和总辆数,需要把这些数据加以整理,制成统计表或条形统计图。

2、数据的整理。

(1)统计表。

想:这个统计表该怎样制?要分几栏?

(2)条形统计图。

投影显示教材第2页空白的条形统计图。

想:

①图中的每格代表几?

②每种车的辆数如何用竖条表示出来?

③如果收集的数目较大怎样办?

做:让学生翻开书第2 页,将条形统计图补充完整。

三、实践操作

1.让学生拿出准备好的硬币,按照刚学的数据的收集和整理的方法进行,并填好书上的统计表。

2.课堂作业。

做练习一的第1题。做练习一的第3题。

四、课外实践

收集本班同学家庭人口数的数据,并按照所学的整理数据的方法进行整理。

课后反思:学生是学习的主体,依照他们积累的经验解决问题,是新课程观的具体体现。是我们每一位教师都应该深入研究的课题。

课题二:数据的收集和整理

教学要求

①使学生认识分组整理和编制统计表的意义;②初步学会分组整理原始数据的方法;③学会填写简单的统计表。

教学重点分组整理原始数据的方法。

教学用具放大例2的两张统计表。

教学过程

一、创设情境

1.我们复习一下已学过的简单数据整理和一些统计表的知识。

2.下面是某班数学兴趣小组中女同学测量身高的统计表。

姓名:

平均:

身高:(厘米)

独立之后思考回答问题:

①如何求出这组女同学的平均身高?

②这组女同学的身高有什么特点?

③最高的女同学比最矮的女同学高多少厘米?

④如果这张表上的女同学很多,又不能清楚地看出她们身高的分布状况,怎么办?这节课我们学习把原始数据按照数量的大小划分成几组,再制成统计表。

二、探索研究

1.分组整理原始数据的方法。

(1)教师出示记录单,学生独立思考

①谁最高?身高多少?

②谁最矮?身高多少?

③身高大多在什么范围?(很难看出,要分组整理一下)

(2)小组讨论:

怎样分组整理?说说你的设想。

(3)分组整理的具体做法(对照着做):

①找出原始数据的范围(学生找出记录单中原始数据的范围)。130~154厘米。

②把数据的范围划分成几组并按照一定的顺序排列制成表。(按5 厘米一组可分为五组,再分成“身高”和“人数”两栏制好表并出示例2的统计表)

③统计各组中的数目,填写统计表(用画正字的方法收集数据并让学生填好统计表)。

(4)看书回答问题:

①看教材第3页,回答下面的三个问题。

②看教材第4页,“想一想”该怎么办?(说明记录单上的原始数据的重要性,不能随便丢掉)

三、课堂实践

1.调查本班学号1~32的学生的体重,并将调查结果按分组的方法进行整理。

2.课堂作业

做练习一的第4、5题。

课后反思:

收集信息、整理信息是现代化社会对人的最基本要求,是每一个人必备的技能之一。而让学生感受体验到收集和整理数据的意义,是激发学生学习内驱内的最好方法。

小学五年级数学教案 篇3

一、教学内容:

人教版五年级上册第62~63页“方程的意义”。

二、教学目标:

1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

三、教学重、难点:

1.教学重点:理解并掌握方程的意义。

2.教学难点:建立“方程”的概念,并会应用。

四、教学过程:

(一)情境引入

今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

(二)探究新知

1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

请同学们仔细观察,在这副图里你获得了哪些信息?

师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100

4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300

师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。

5.观察比较:

50+50=100

100+x>100

100+x>200

100+x<300

100+x=250

总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。

像100+x=250这样,含有未知数的等式就是方程。

揭题:今天这节课我们学的就是“方程的意义”。(板书课题)

6.提问:这一个等式是方程吗?为什么?

追问:这两个式子里都含有未知数,它们是方程吗?

思考:你认为一个方程应该符合哪些条件?

(强调:方程既要是等式,又要含有未知数。)

(三)巩固练习

1.判断下面哪些式子是方程,并同桌说一说理由。

35+65=100 8-x=2 y+24

2.4=a×2 x-14>72 15÷b=3

5x+32=47 28<16+14 6(y+2)=42

2.下面哪些天平不能用方程表示?(出示6幅天平图)

用方程表示出剩下天平的数量关系。

(说一说天平两边的数量关系,列方程)

3.用方程表示下面的数量关系。(说数量关系,列方程)

先独立列出方程,再与同桌说一说方程表示的数量关系。

4.猜方程

让学生初步感知:方程一定是等式,等式不一定是方程。

5.写方程,编故事

6.方程“史话”。

(四)课堂小结

今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?