首页 > 教学教案 > 教案大全 > 《正数和负数教案》设计意图 正数与负数 教案优秀4篇正文

《《正数和负数教案》设计意图 正数与负数 教案优秀4篇》

时间:

作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是的小编为您带来的《正数和负数教案》设计意图 正数与负数 教案优秀4篇,如果能帮助到您,小编的一切努力都是值得的。

《正数和负数教案》设计意图 正数与负数 教案 篇1

1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛

2、数学思考:体会数学符号与对应的思想。

3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。

进一步理解正、负数及零表示的量的意义。

理解负数及零表示的量的意义。

卷尺或皮尺

活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。

活动2、活动安排 使学生进入问题情境,加深对负数的理解。

活动3、举例说明 提高解决实际问题的能力。

活动4、巩固练习 掌握正数和负数。

活动1

1、 给出一组数,请学生说说哪些是正数、负数。

2、 学生举例说明正、负数在实际中的应用。

师生行为及设计意图

通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。

活动2

1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。

2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)

师生行为

1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。

2、各小组派一名同学汇报完成的情况。

设计意图

通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。

活动3

问题展示

1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。

2、 20xx年 商品进出口总额比上年的变化情况是:

美国减少6.4%% , 德国增长1.3%,

法国减少2.4% , 英国减少3.5%,

意大利增长0.2 %, 中国增长7.5%,

师生行为及设计意图

在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。

活动4

1、 p6 练习

2、 总结:这堂课我们学习了那些知识?你能说一说吗?

3、 作业 p7习题1 .1 4、7、8

师生行为及设计意图

教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。

教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。

学生课后巩固、提高、发展。

《正数和负数教案》设计意图 正数与负数 教案 篇2

人教版 七年级 上册 第一章 有理数 1.1 正数和负数

在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

使学生经历数学化,符号化的过程,体会负数产生的必要性。

感受正、负数和生活的密切联系,享受创造性学习的乐趣。

体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

体会负数的意义,通过描述性定义认识正数、负数和“0”。

一、感受相反方向的数量,经历负数产生的过程。

1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。

2、引入负数的概念

3、总结正负数

(1)这些数很特别,都带上了符号,它们是一种“新数”。 -9、-4.5等都叫负数; +7、+988等都叫正数。你会读吗?请你读给大家听。注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

下面让我们走进正数和负数的世界,进一步了解它们。(板书课题)

二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?用正数或负数表示下列数量。(1向东走200米,用+200米表示;那么向西走200米元用 表示。

2.说说实际问题中负数的确定

(1.)表示海拔高度

(2.)解释温度中正负数的含义

(3)做练习三

3、怎样理解具有相反意义的量

三、理解0

1、0既不是正数也不是负数。0是正负数的分界。

2、0只表示没有吗?

1).空罐中的金币数量;

2).温度中的0℃;

3).海平面的高度;

4).标准水位;

5).身高比较的基准;

6.)正数和负数的界点;

3、总结

0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

四、探究活动(出示课件):

1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?

若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为 。

2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。

3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是( )

a、20xx年全球财富500强中对主要零售业的统计,大荣公司年收入为25320100万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。

b、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。

c、收入30元与下降2米是具有相反意义的量。

d、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。 e、收入与支出是具有相反意义的量

f、如果收入增加18元记作+18元,那么-50元表示支出减少50元

5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?

答:不一定,a可能是正数,可能是负数,也可能是0

五、探索与思考:

1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;

2、例2 -1小的整数如下列这样排列

第一列 第二列 第三列 第四列

-2 -3 -4 -5

-9 -8 -7 -6

-10 -11 -12 -13

-17 -16 -15 -14

... ... ... ...

在上述的这些数中,观察它们的规律,回答数-100将在哪一列.

3、例3

20xx年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率。

思考 :负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?

六、 应用与提高

1.、有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)

质量 497 501 503 498 496 495 500 499 501 505

质量误差分别为:

如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?

七 、课堂练习

1、下列说法中正确的个数是()

1)、带正号的数是正数,带负号的数是负数

2)、任意一个正数,前面加上“-”号,就是一个负数

30、0是最小的正数、

4)、大于0的数是正数

5)、字母a既是正数,也是负数

a.0 b.1 c.2. d.3

2.判 断

(1)0是整数( )

(2)自然数一定是整数( )

(3)0一定是正整数( )

(4)整数一定是自然数( )

3.说明下面这些话的意义:

①温度上升+3 ℃ ②温度下降+3 ℃

③收入+4.25元 ④支出—4.2元

4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?

5.1)向东走+5m,-6m,0m表示的实际意义是什么呢?

(2)某水泥厂计划每月生产水泥1000t ,一月份实际生产了 950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和 负数表示每月超额完成计划的吨数各是多少?

八、课堂小结 :

1. 正数:以前学过的数中,除0外的数叫做正数;如:+5,+0.23, 8818??

2.负数:在正数前面加上“-”号的数叫做负数;如:-5, -0.54, ??

3、 0既不是正数,也不是负数。

4、一个数前面的“+”、“-”号叫做它的符号

5、在同一个问题中,分别用正数与负数表示具有相反 的意义的量。

附板书:

正数和负数

正数> 0 > 负数

+ 既不是正数-

正号 也不是负数 负号

本节课是让学生在现实情境中了解正负数的意义,会用正、负数描述日常生活中相反意义的量。

1、 练习贴近生活实际,促进学生对所学知识的有效应用联系生活实际的练习,如“分析质量问题,温度问题。“调查体重”使学生体会到数学源于生活,又应用于生活,让学生感受到数学的作用,又对数学产生亲切感。

2、这节课可以用信息技术来创设情境,激发学生的学习兴趣。用一个相对完整的事把温度、收入支出和海拔三个关键词串在一起。这样,学生对所学的知识会更有兴趣。

3、这节课还可以借助信息技术来理解相对意义的量。例如:,出示珠穆朗玛峰和吐鲁番盆地的照片,与海平面比,一高一低。这些都是相对意义的量。有了这些形象的照片,就更有利于学生相对意义的量的理解。

4、 融入多种学习方式,促进有效教学的开展

引导学生自主探索学习,给学生充足时间去尝试,交流方法,让学生从不同角度去分析和解决问题,做到学生间的思想沟通,集思广益,寻找答案,解决问题,体现了学生解决数学问题思维的多样化,个性化。另外,在课堂教学中努力做到:师生互动,生生互动,全班交流,共同学习。

5、在本节课的教学中,还存在着诸多不足,比如如何更好地安排时间,将知识落到实处?”“交流时,如何选择个别交流与集体交流?老师的评价怎么才能更到位。”我想这些都是今后我要努力的方向。

《正数和负数教案》设计意图 正数与负数 教案 篇3

1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。

2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系。

(2)数轴能反映数的性质。

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。

(4)数轴可使有理数大小的比较形象化。

3.对于相反数的概念,从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部分。

4.正确理解绝对值的概念是难点。

根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

(1)任何有理数都有唯一的绝对值。

(2)有理数的绝对值是一个非负数,即最小的绝对值是零。

(3)两个互为相反数的绝对值相等,即│a│=│-a│。

(4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.

(5)若│a│=│b│,则a=b,或a=-b或a=b=0.

三维目标

1.知识与技能

(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。

(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解。

(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值。

(4)会利用数轴和绝对值比较有理数的大小。

2.过程与方法

经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。

3.情感态度与价值观

使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。

重、难点与关键

1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值。

2.难点:准确理解负数、绝对值等概念。

3.关键:正确理解负数的意义和绝对值的意义。

课时划分

1.1 正数和负数 2课时

1.2 有理数 5课时

1.3 有理数的加减法 4课时

1.4 有理数的乘除法 5课时

1.5 有理数的乘方 4课时

第一章有理数(复习) 2课时

1.1正数和负数

三维目标

一。知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二。过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三。情感态度与价值观

培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键

1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2.难点:正确理解负数的概念。

3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪。

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

五、讲授新课

(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

六、巩固练习

课本第3页,练习1、2、3、4题。

七、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。

八、作业布置

1.课本第5页习题1.1复习巩固第1、2、3题。

九、板书设计

1.1正数和负数

1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的。意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

《正数和负数教案》设计意图 正数与负数 教案 篇4

2、能判断一个数是正数还是负数,理解数0表示的量的意义;

3、会用正负数表示实际问题中具有相反意义的量。

正、负数的概念,具有相反意义的量

理解负数的概念和数0表示的量的意义

师生活动 时间 复备标注

我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活。

老师刚才的介绍中出现了一些数,它们是些什么数呢?

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。 所以,数产生于人们实际生产和生活的 需要。

在生活中,仅有整数和分数够用了吗?

数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?

什么是正数,什么是负数?

归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….

这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值。

如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?

0有什么意义?

归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

有哪些相反意义的量?

请举出你所知道的相反意义的量?

“相反意义的量”有什么特征?

归纳小结:一是意义相反,二是有数量,而且是同类量。

完成3页练习

自学例题,完成 归纳。寻找问题。

完成4页练习

课本第5页练习1、2、3、4、7、8.

1、到目前为止,我们学习的数有哪几种?

2、什么是正数、负数?零仅仅表示“没有”吗?

3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用。 明确目标