《苏教版数学六年级下册电子课本》
苏教版与人教版一样,使用范围较广。注重学生对字的练习等。同时配有一系列的资料、作业,因此被很多地方选用。下面小编为大家带来苏教版数学六年级下册电子课本,希望对您有所帮助!
苏教版数学六年级下册电子课本
查看完整版可微信搜索公众号【5068教学资料】,关注后对话框回复【6】获取六年级语文、六年级数学、六年级英语电子课本资源。
苏教版是什么意思
苏教版是指由江苏教育出版社出版的一系列教材,人教版是指人民教育出版社出版的一系列教材。
由江苏教育出版社出版的一系列教材,称为苏教版。目前,苏教版教材在山西、山东、安徽、陕西等地均有使用,小学均为江苏教育出版社的教材。与人教版一样使用较广。注重学生对字的练习等。同时配有一系列的资料、作业,因此被很多地方选用。
目前苏教版已通过审查的教材涵盖了中小学语文、小学数学、小学科学、高中数学、中学生物、高中物理、高中化学、高中通用技术各个科目。
六年级数学怎么学才能提高成绩
1、加强基础知识
六年级学生是打好基础的关键时期,基础知识应该牢固地掌握,否则将会给以后的学习带来困难。牢固掌握并非是让学生死记硬背,而是让他们真正理解。比如在记忆比例的意义时,可以让学生明白,首先是一个式子,然后是相等的式子,最后是两个比相等的式子。
2、多做题,养成良好的解题习惯
如果要想提高数学,多做题目是在所难免的,要熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的练习题为准,反复练习打好基础,再找一些课外的习题,以帮助自己开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,应该备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,随时能进入最佳状态,在考试中能运用自如。实践证明越是到关键时候,学生所表现的解题习惯与平时练习无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,所以在平时养成良好的解题习惯是非常重要的,这是提高六年级数学成绩的小妙招之一。
3、掌握良好的学习习惯
数学能够检验孩子的学习习惯,今天没有上语文课,可以在明天下课后补上,但数学不行,数学是一环扣一环的。想要学会小数的加减法混合运算,如果不会小数的加减法,那么学会混合运算就像无稽之谈。因此,数学的任何知识点都不能遗漏,否则只会越来越落后。
数学中有缺失的知识点,必须马上弥补。在数学课前,可以提前预习,课上认真听讲,课下及时复习,这一套良好的学习习惯必须保持,这是学好数学的基础。
在学习六年级数学时,要提高自主学习的能力,就要勇于质疑,学生有质疑是因为在思考问题,有不明白的地方才会质疑老师所讲,老师对其讲解后,孩子在学习数学中也会有新的学习意识,这有利于孩子提高数学成绩。
小学六年级数学下册知识点
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:
(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
12.图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
13.实际距离=图上距离÷比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
14.图上距离=实际距离×比例尺;
例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)
六年级下册数学课件
教学目标
1.1知识与技能:
1.在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
1.2过程与方法:
经历负数的认识过程,体验比较、归纳总结的方法。
1.3情感态度与价值观:
感受数学与实际生活的联系,激发学习兴趣,培养学思结合的良好学习习惯,体会数学知识之间内在联系的逻辑之美。
教学重难点
2.1教学重点
能用正、负数表示生活中两种相反意义的量。
2.2教学难点
用负数解决生活中的实际问题。
教学工具
多媒体课件
教学过程
一、游戏引入
同学们,今天我们来玩个游戏轻松一下,游戏叫“我正你反”。游戏规则:老师说一句话,请你说出与它意思相反的话。
1、向上看(向下看)
2、向前走200米(向后走200米)
3、电梯上升15层(电梯下降15层)
4、零上10摄氏度(零下10摄氏度)
很好,接下来,老师换一个游戏规则。老师给大家看一幅图片(课件出示第2页例1的几幅图)。
二、初步感知
师:同学们以前有没有见过类似于第2页例1的几幅图的情景呢?
生:有,看天气预报的时候。
师:我国面积非常大,在同一个时间,不同的地区气温相差非常大。仔细观察这幅图,你看,这六个城市,你能读出这六个城市的天气怎样的吗?
出示例1情境图.
学生读一读。
三、认识负数
1、认识温度计,理解用正负数来表示零上和零下的温度。
师:(课件出示温度计)同学们,认识它吗?
生:温度计。
师:你知道它们表示什么?(课件出示℃、℉)
生:℃表示摄氏温度,读作“摄氏度”。
生:℉表示……
师:℉表示华氏温度,读作“华氏度”。那我国用什么来计量温度呢?
生:我国用摄氏度来计量温度。
师:一大格表示多少摄氏度?一小格表示多少摄氏度?
通过课件展示让学生对温度计做进一步的认识,让学生知道一大格表示10摄氏度,一小格表示2摄氏度。
师:0摄氏度怎样规定的?你知道吗?
生:水结冰的温度定为0℃。
师:是的,科学家把水结冰的温度定为0℃。读作:0摄氏度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号)
师:零上温度用正数表示,零下温度用负数表示。
师:那零上10摄氏度记作?:+10℃零下10摄氏度记作?:-10℃
生:零上10摄氏度记作:+10℃;零下10摄氏度记作:-10℃。
2、读出水银柱所表示的温度。(课件出示)
教师课件出示水银柱所表示的温度,引导学生读一读。
3、从上面的天气预报图中你了解到哪些信息?
例如:北京高温度是5℃,低温度是零下5℃。
师:北京-5℃和5℃一样吗?都表示什么意义呢?
生:-5℃和5℃不一样,-5℃表示比零度还要低5摄氏度,5℃表示比零度高5摄氏度。
生:-5℃和5℃不一样,-5℃比零摄度冷,5℃表示比零摄氏度热。
教师小结:5℃和-5℃表示具有相反意义的量。
4、正确读出例1中的各个城市的天气温度。
师生一起小结:当气温高于0℃的时候,我们在数字前面加一个“+”号或者直接用数字来表示,读作零上_×摄氏度。当气温低于0℃的时候,我们在数字前面加一个“-”号来表示,读作零下_×摄氏度。因此,+5℃表示零上5摄氏度,读作正三摄氏度;-5℃表示零下5摄氏度,读作负三摄氏度。(板书:+5℃正三摄氏度;-5℃负三摄氏度)
学生自主完成例1的信息表,然后和同桌说说各数表示的意思。
指名学生回答,教师点评并总结。
5、教学教材第3页例2。
师:接下来我们再来看一下第3页例2的图片,每个数字表示什么意思?
生:“2000”表示存入2000元。
生:“-500”表示支出了500元。
生:“-132”表示支出了132元。
生:“500”表示存入500元。
师:你能找到意思相反的词语或者数学符号吗?(提示2000.00与+2000.00代表相同的意思。)
师:那在这里500.00和-500.00分别表示什么意思呢?
生:500.00表示存入500元,-500.00表示支出500元
学生说出各个数字的含义。
教师小结:500和-500表示具有相反意义的量。
师:很好,同学们再试着说说图中其他数各表示什么。
学生交流。
6、思考总结
教师引导学生比较例1和例2,找出他们的共同点。
师:同学们比较一下例1和例2,他们有什么共同点吗?
学生小组讨论汇报。提示:在例1和例2中,都有两种数来表示两种相反意义的量—零上温度和零下温度,支出与收入。
7、0是什么数?
师:我们把海平面的高度看做多少呢?
生:看作0。
师:(课件展示)比海平面高的用(+几或几)表示,例如+5000米比海平面低的用(-几)表示,例如-2000米
把海平面0当成正数和负数的分界线。
师:(课件展示)珠穆朗玛峰比海平面高8844.43米,怎么表示?
生:记作+8844.43米。
师:吐鲁番盆地比海平面低155米,如何表示?
生:记作-155米。
课件展示小知识:海平面,顾名思意,就是大海的水面。它用在测量地面高度上,又称海拔。我国所有的大地测量和标志,都是以黄海海面的基点开始的,任何海拔标高,都是相对于黄海海面的基准点。
(通过对海平面的认识,温度计上的0,得出0像一条分界线,把正负数分开,所以0既不是正数也不是负数。)
小结:为了表示两种相反意义的量,这里出现了一种新的数:-16,-500。像-16,-500,-3,-0.4……这样的数叫做负数。-读作负八分之三。
而以前所学的16,2000,,6.3……这样的数叫做正数。正数前面也可以加上“+”号,例如+16,+,+6.3等(也可以省去“+”号)。+6.3读作正六点三。
师:0像一条分界线,把正负数分开。0既不是正数,也不是负数。
8、做一做
课件出示题目:
(1)、用正负数表示。
①、零上12.5摄氏度表示为:________,(+12.5℃)
零下3.5摄氏度表示为:________。(-3.5℃)
②、广西某地有一天坑,
坑口高于海平面125m,表示为:________,(+125)
坑底低于海平面m,表示为:________.(—100)
(2)、先读一读,再议一议:观察这些数,可以怎样分类?
学生同桌讨论,教师指名汇报。
9、教师引导学生总结:数可以分成正数、0、负数。正数包括正整数、正分数、正小数,负数包括负整数、负分数、负小数,0既不是正数,也不是负数。它是正、负数的分界点。
正数前面可以写“+”,但通常不写,而负数前面的“-”必须写。正数前面可以读“正”,但通常不读(如果有“+”号必须读),而负数前面的“负”必须读。
四、走进生活
师:负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。课件出示题目进行检测:
1.你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的低温度是__________。月球表面的低温度是__________。(100℃,0℃,-88.3℃,-183℃)
2、做一做
胜5场记作_______,读作_________;(+5场,正五场)
输3场记作_______,读作_________。(-3场,负三场)
收入100元记作_______,读作___________;(+100元,正一百元)
支出200元记作_______,读作___________。(-200元,负二百元)
学生交流,指名说一说。
3、叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?
学生交流,指名说一说。
4、六年级三个班进行智力抢答赛,答对一题得10分,答错一题扣10分,不答得0分。根据三个班的得分,说一说他们的答题情况。
学生交流,指名说一说。
5、你会用正负数表示下面各地的海拔高度吗?
(1)、华山比海平面高2000m,记作(+2000m)
(2)、死海比海平面低392m,记作(-392m)
学生交流,指名说一说。
6、我能判断对错
(1)任何一个负数都比正数小。(√)
(2)一个数不是正数就是负数。(×)
(3)因为“4”前面没有“+”号,所以“4”不是正数。(×)
(4)上车5人记作“+5人”,则下车4人记作“-4人”。(√)
(5)正数都比0大,负数都比0小。(√)
(6)5゜C和+5゜C所表示的气温一样高。(√)
7、小结交流
师:你还在什么地方见过负数吗?
生:家庭收支账本上。
生:冰箱的冷冻室温度。
生:地图上显示的海拔高度。
五、巩固练习
1、教材第4页“做一做”第1题。
学生独立读出-3℃和-18℃这两个温度,并根据题干思考北京和哈尔滨的温度哪个低些。
教师指名回答。
2、教材第4页“做一做”第2题。
学生小组依次回答,教师集体订正。
教师强调:0既不是正数,也不是负数。
课后小结
师:通过这一节课的学习,你有什么收获?
师:这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
板书
认识负数
+5℃正三摄氏度-5℃负三摄氏度
5三-5负三
八分之三-
负八分之三
0既不是正数,也不是负数。